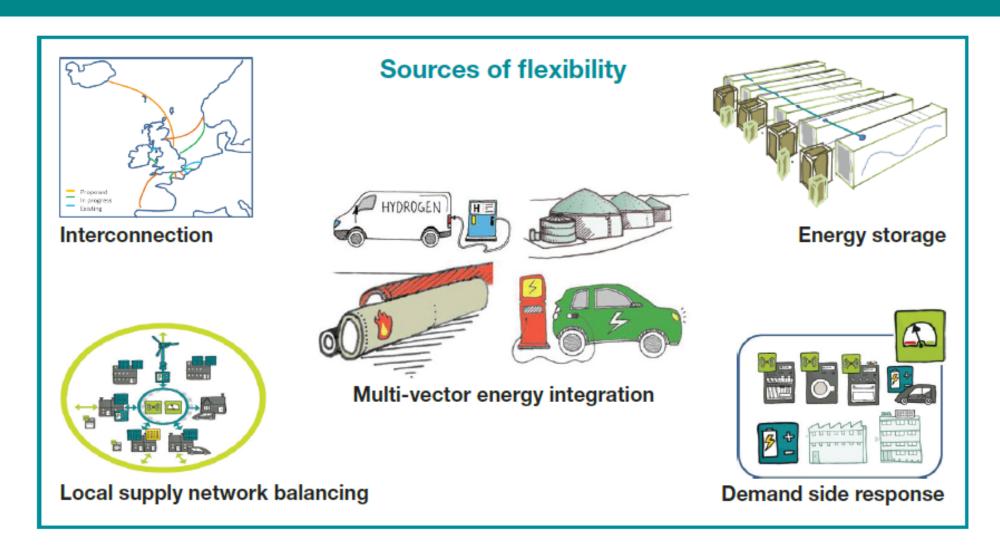
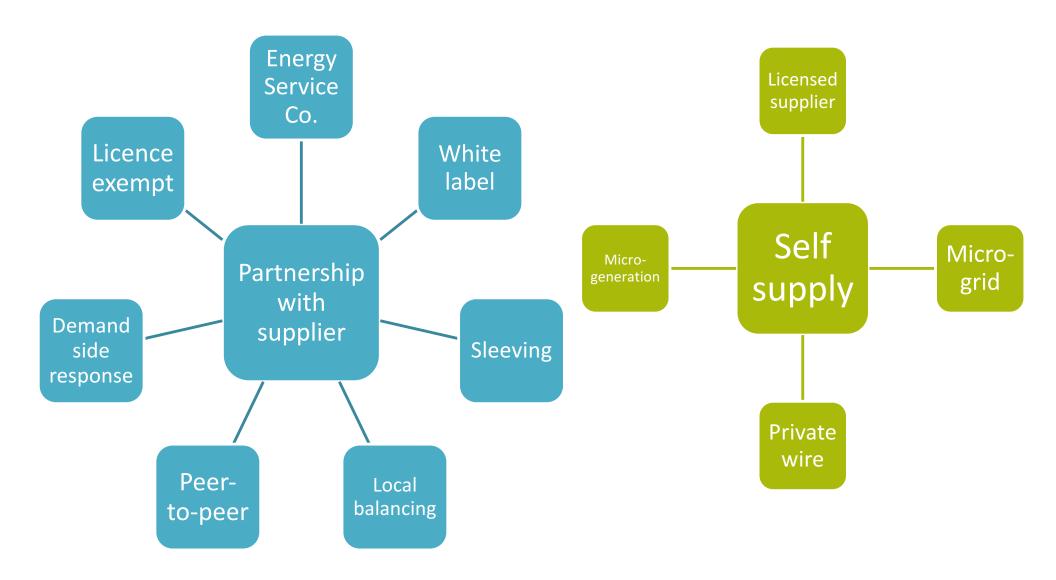


Storage & local supply – the community energy perspective


1 June, March 2017

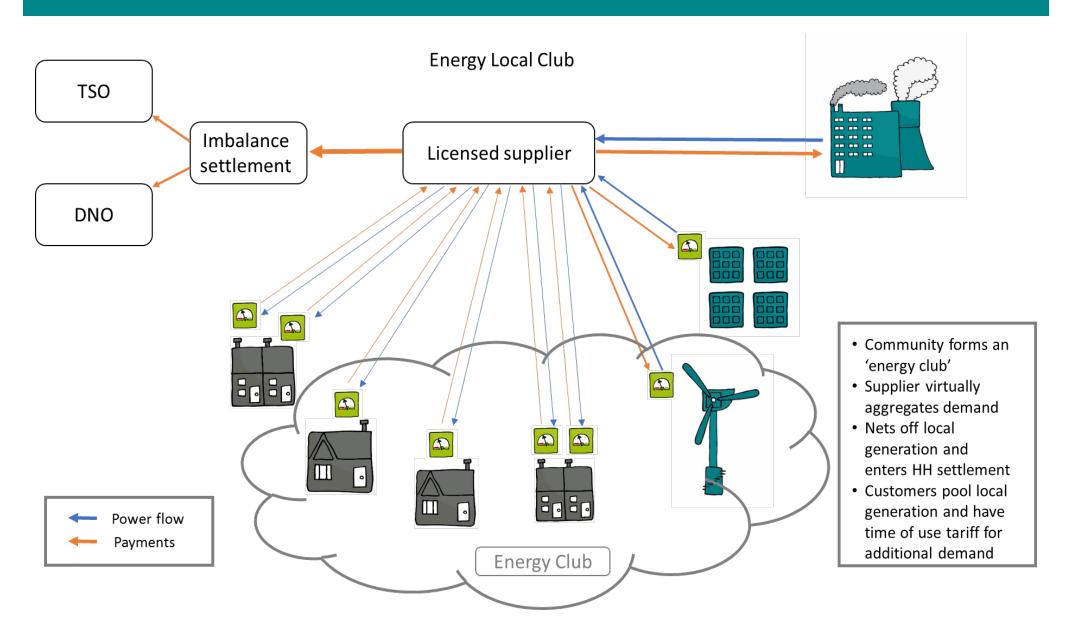
Olly Frankland, project manager, Regen

Flexibility



'The saving could be as large as **£8 billion** a year by 2030.' Lord Andrew Adonis, Chair, The National Infrastructure Commission

1. Local Supply models



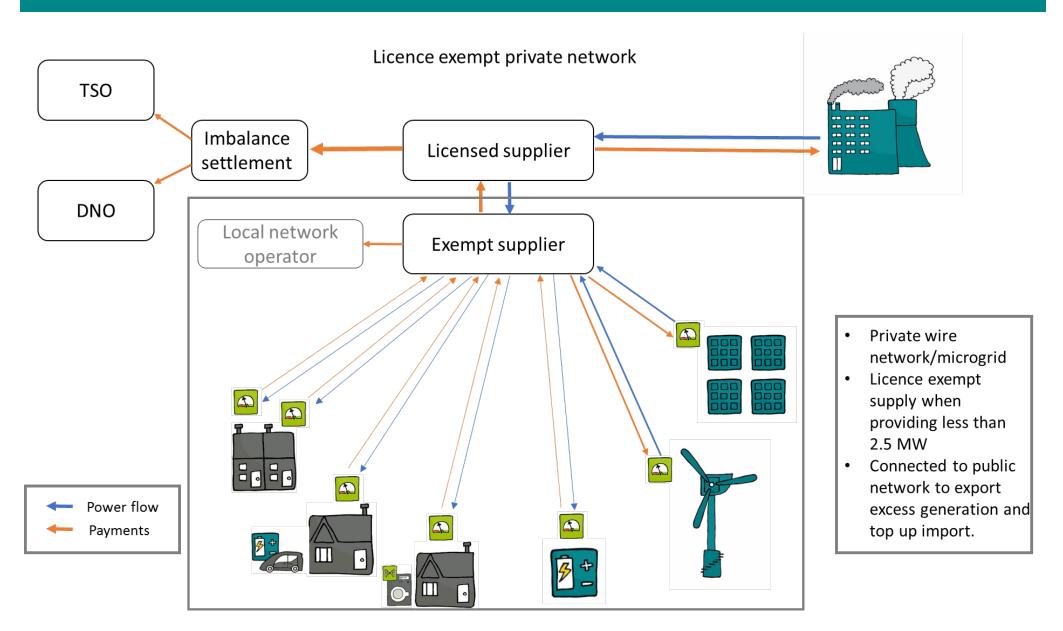
Local supply = the supply of locally generated <u>electricity</u> to a local group, for the benefit of local <u>domestic</u> consumers

Energy Local Club

Energy Local Club

Benefits:

- Closer link between local generation and demand
- Good value flow to consumers


Drawbacks:

- Hard to switch customers
- Energy supplier needs to be amenable
- "Smart" metering

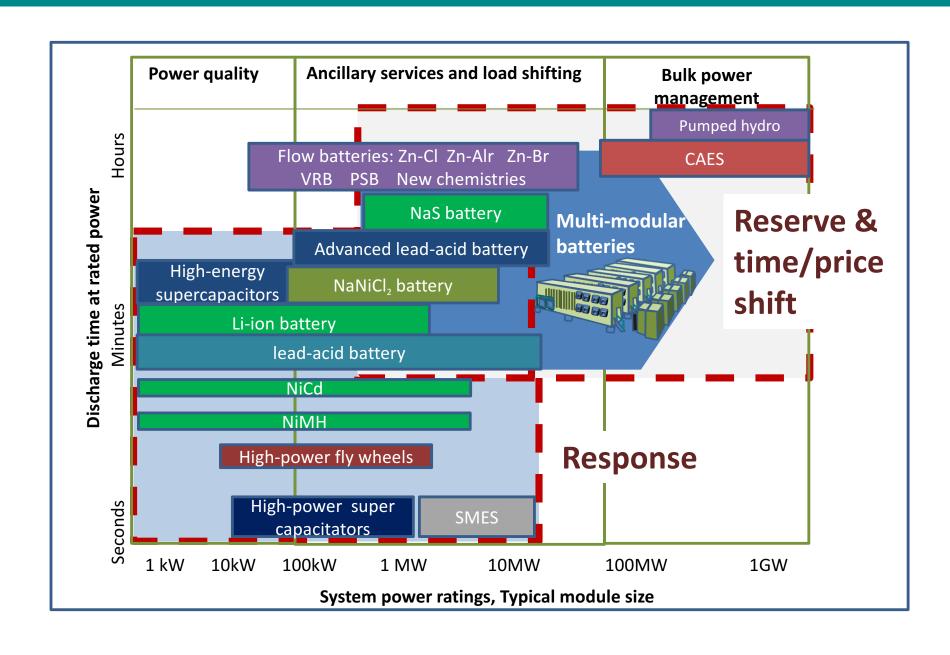
Case study – Energy Local, have linked 100 households in Bethesda, Wales with a National Trust hydro turbine

Licence exempt private network (microgrid) 1000

Licence exempt private network (microgrid)

Benefits:

- No need for supply licence
- Solution for subsidy free generation


Drawbacks:

- Hard to find the right customer to guarantee demand
- Large upfront capital investment

Case study - Thameswey, has a private wire network in Milton Keynes providing power to businesses and households

2. Energy storage technologies

The role of energy storage

Inherent value of energy storage

Response

"ability to respond quickly to grid or price signals" Frequency response

Reactive power and voltage

Other ancillary services

Reserve

"ability to store and discharge energy when needed" Back-up Operating reserve

Capacity reserve

Price / time shift

"ability to shift energy from lower to higher damand and price periods" Price arbitrage

Peak shaving

Grid peak price avoidance

Aggregation

Which revenues for which assets?

	Main Revenue Streams	Target Incentive Programmes / Benefits
1. Response service	Frequency & voltage programmes	Enhanced Frequency Response (EFR) Firm Frequency Response (FFR) Enhanced Reactive Power Services (ERPS)
2. Reserve service	Capacity & reserve contracts	Short Term Operating Reserve (STOR) Fast Reserve Capacity Market
3. C&I high energy behind the meter 'prosumers'	Network charges & capacity contracts	Transmission peak charges (Triads) Distribution peak charges (DUoS red band) Demand Turn-up
4. Domestic and community 'own-use'	Optimising self-usage of on site generation	Future Time of Use Tariffs (ToUTs)? Community scale aggregation into FFR/STOR?
5. Generation co-location	Time & Price Shift	Avoiding export restrictions (Time-Shift) Diverting generation into high price zones Capacity Market

Potential "waves" of deployment

Wave 1

Response Services (EFR, FFR & DSR)

First "behind the meter" high energy users

Plus domestic "early adopters"

Wave 2

"Behind the meter" industrial - DSR

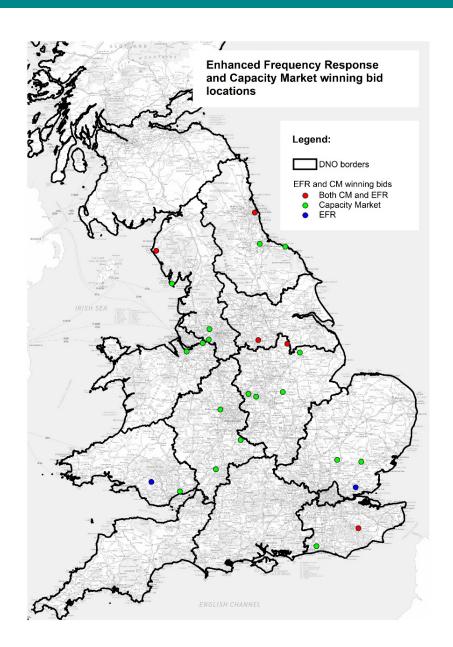
RE co-location - especially for new PV

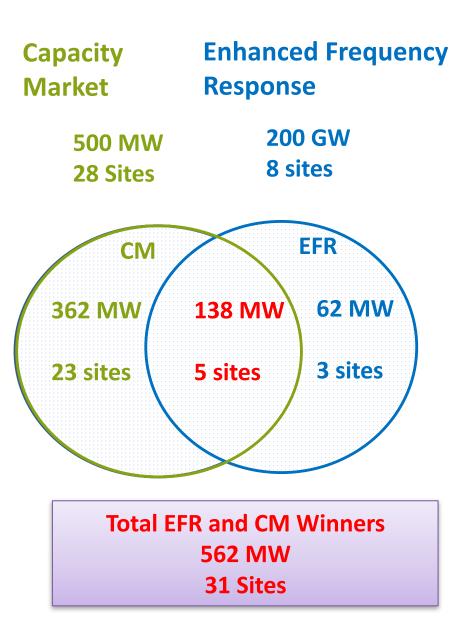
Some standalone sites

Domestic and community storage with PV

Wave 3

Aggregation and marketplace models


RE co-location


Domestic and community storage becomes standard

Today Tomorrow The day after!

Current pipeline cont.

^{*} National Grid reports a lower figure @ 62 sites which could well be right

Potential scale of the storage market

GB market scenario growth scenario by 2030*				
Business model	High Growth Scenario	Slower and no growth Scenario	Possible upside very high growth scenario	
Response service	2 GW	0.5 - 1 GW	2 - 3 GW	
	2 GWh	0.5 - 1 GWh	4 - 5 GWh	
Reserve Services*	3-4 GW	2-3 GW	4 GW	
C&I high energy user & behind the meter	2.5 - 4 GW	0.6 - 1.2 GW	5 GW	
	10 - 16 GWh	2.5 - 5 GWh	20 GWh	
Domestic and community own use with PV***	1.5 - 2 GW	0.37 - 0.75 GW	3 GW	
	6 - 8 GWh	1.2 - 3 GWh	12 GWh	
Generation co-location	2 GW	0.5 - 1GW	4 GW	
	6 - 8 GWh	2-4 GWh	16 GWh	
Total GB market	10 - 12 GW	4 - 5 GW	15 GW**	
	24 - 44 GWh	6 - 13 GWh	50 GWh	

^{*} includes existing 2.7 GW of storage – mainly pumped hydro reserve services

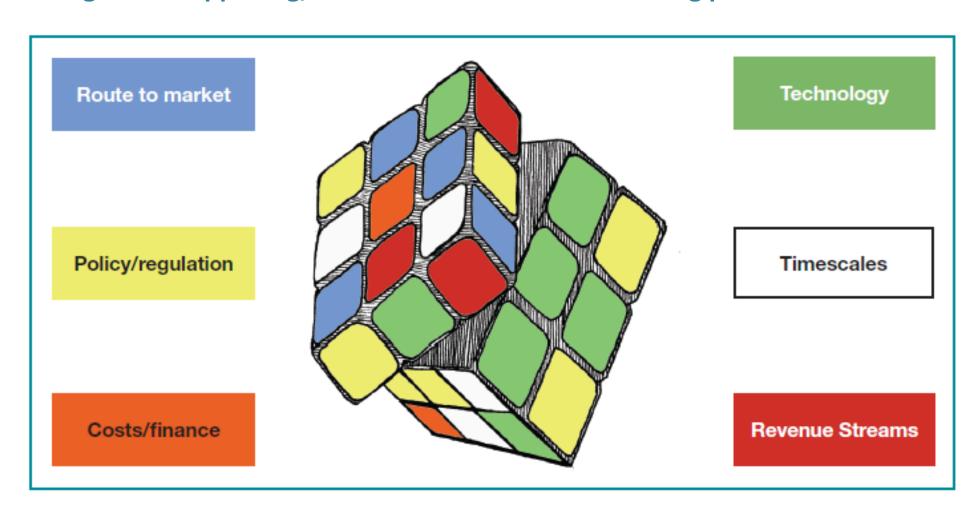
^{**} A very high growth scenario for all business models would probably imply some degree of revenue cannibalisation between business models and is therefore less likely by 2030.

^{***} Would include EV vehicle-to-house storage discharge although this has not been modelled separately

Key points for communities

- The income is less certain
- Lithium-ion batteries are dominant
- Costs are coming down rapidly
- Warranties and lifetime vary
- Regulation is lagging behind the market
- There is a risk of mis-selling

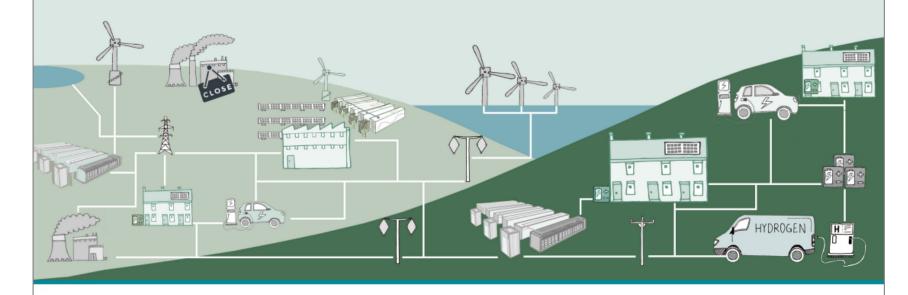
Summing up...



Domestic (10's kWh)	Small commercial (100's kWh)
Mainly new solar PV + battery installations due to lower rate of VAT (5%)	Behind-the-meter high energy user (with generation)
Innovators/early adopters – non- financial drivers	Early adopters with financial case possible - mainly through network cost reduction
Cost and lack of awareness main	
barriers	Changes to DNuOS in SW undermine model
	Cost and lack of finance main barriers

Summing up...

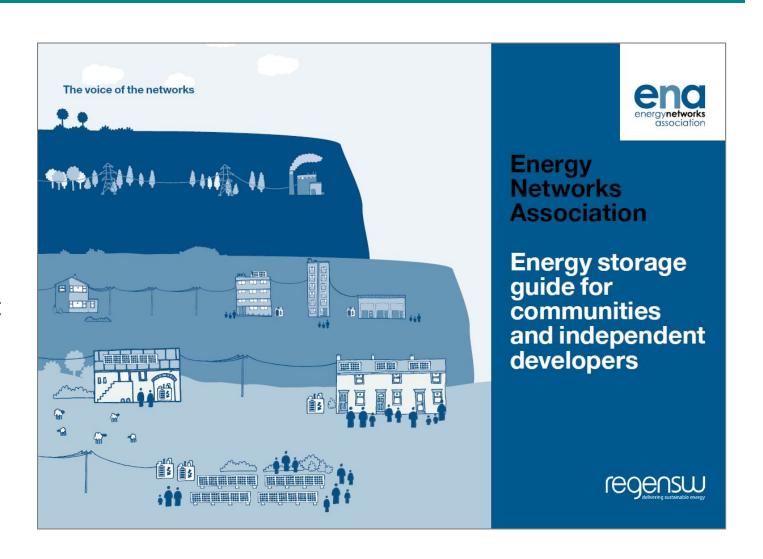
There is significant interest in storage across the energy sector Progress is happening, but there are still a lot of moving parts...


Energy Storage - Towards a Commercial Model

Pathways to Parity - Market insight series

Energy Storage - Towards a commercial model - 2nd Edition

Sponsored by:



Triodos @ Bank

ENA storage guide

- Introduction to area of energy storage and ways to connect to the network
- For community energy groups and smaller independent developers

WPD consultation paper

In undertaking this consultation, WPD is seeking to understand:

- scale of growth
- type of energy storage assets/projects
- operating behaviour of storage assets

Contact: Ray Arrell Senior project manager rarrel@regensw.co.uk

Operating Modes

Consultation to assist future network modelling

Questions

Generic storage operating modes

Operating Mode	Summary Definition		
i) Network Auxiliary services only	Operating under direct contracted response services such as frequency, Voltage / Reactive Power. This mode is for battery systems that are dedicated to being available for these response programmes 24hrs a day		
ii) Network Auxiliary services + Network Peak	As above, but carving out a small window of operation (2-4hrs) to discharge in peak network charge + commodity price periods.		
iii) Reserve service standby only	Operating mode reflecting operation under balancing service contracts, effectively operating to be available for STOR, Fast Reserve, CM etc idle operation awaiting triggers/alerts		
iv) Reserve service + Network Peak	Operating under balancing services contracts as above, but also carving out a window of operation to discharge during peak network charge + commodity price periods		
v) Network Peak Charge Avoider Only	A mode of operation designed predominantly for behind the meter classes of project, whereby a battery system has been implemented to supply a demand load during network peak charges. Battery charging is during lowest price periods.		
vi) Cost Sensitive Self- consumption	A mode where a demand user with generation is maximising self-consumption, but discharging during high commodity/delivery charge periods. This could currently be a C&I user with generation, subject to cost sensitivity or smaller users with Time of use Tariffs		
vii) Max Self-Use	A mode where the maximisation of self-usage is not sensitive to high/low price thresholds (i.e. domestic solar with a flat electricity import tariff). Charging when solar is generating, discharge when energy is needed.		
viii) Generation Peak Shaving	Mode of operation where storage is co-located with a stand alone generation, diverting proportion of generation into storage, so as to bypass grid export limitations. Likely to also discharge during network peak.		
ix) Generation Time & Price Shift	Mode as above, but whereby there is no grid export limitation restriction and the co-located storage is simply shifting the time of some exported volume into more beneficial times - i.e. evening network peak		

Standard Storage operating modes

Response service

Response service

High energy user "behind the meter"

Domestic and community "own use" with PV

Generation co-location

Energy trader

Automatic triggered (±) power response

Peaking reserve on call for STOR and Fast reserve

Peak demand shaving (with generation time shift)

Maximise Own
Consumption – usage
optimisation

Peak generation shaving

Price Arbitrage

with winter peak TRIAD discharge window

with winter peak TRIAD discharge window

With peak (TRIAD/Red Zone) discharge

Minimise Energy Cost with price optimisation

or

Revenue optimisation

Storage growth factors

Wave 1 - led by response services

- Storage dominates the EFR, FFR, DSR and new voltage support services
- Higher value services drive market growth with focus on MW and response time
- First applications for high energy industrial and commercial users behind the meter models
- Domestic and community scale early adopters
- Development of a DSO distribution network model creates new market opportunities
- Government creates framework for a flexible and smart energy system

Wave 2 - co-location business models become viable

- Market for C&I high energy user/generators grows rapidly
- Emission controls and an attractive business case mean that storage effectively replaces diesel generators for most C&I application
- First co-location projects with solar PV lead to a rapid expansion and new ground mounted solar PV farms are developed
- Domestic and community scale storage market expands rapidly driven by falling costs

Wave 3 - expansion and new market models

- Aggregation and new trading platforms develop
- Local supply markets, private wire and virtual markets rely heavily on electricity storage
- Domestic electricity storage becomes common as costs fall and electric vehicle purchases increase, alongside growth in the electrification of heat
- Most new solar and wind farms now include electricity storage to harness low marginal cost energy and price arbitrage
- Towards the end of the decade, heat storage and electricity storage are increasingly integrated

Agenda

13.30	Welcome
13.45	Adapting to policy changes and engaging with government
	Jodie Giles, senior project manager – communities, Regen
14.00	The changing electricity network: the transformation from DNO to
	DSO, innovation and opportunities for community groups
	Alison Sleightholm, regulation manager, Western Power Distribution
	Q&A
14.45	Refreshment break and networking
15.15	New community energy business models: local supply and storage
	Olly Frankland, senior project manager, Regen
15.45	Creating, Catalysing, Collaborating. Saving lives and more with solar
	Anthony Walters, Chase Community Solar & South Staffordshire CE
16.15	Q&A
17.00	Networking drinks
17.30	Close WESTERN POWER DISTRIBUTION

Serving the Midlands, South West and Wales